High-precision uranium isotopic analysis for environmental forensics using MC-ICPMS: Demonstration studies at the Hanford Site, Washington

John N. Christensen P. Evan Dresel Mark E. Conrad Donald J. DePaolo

The contrasts in isotopic composition between natural and anthropogenic uranium and the wide variation in the composition of different processed uranium sources, promotes the measurement of uranium isotopic composition as a fingerprint and tracer of uranium contamination in the environment. Previous studies mainly have focused on the use of only one of the isotope ratios of U, e.g. ²³⁴U/²³⁸U, ²³⁸U/²³⁸U or ²³⁶U/²³⁸U. We measure all three of these ratios in environmental samples in order to better distinguish, characterize, identify and apportion U sources. For our U isotopic measurements, we employ an IsoProbe (GV Instr. Inc.) multiple-collector ICP source magnetic sector mass spectrometer. U isotopic compositions are measured simultaneously using a combination of Faraday cups (for ²³⁵U and ²³⁸U) and a Daly photomultiplier ion counting system (for ²³⁴U and ²³⁶U in two separate analyses). U is separated from samples (e.g. vadose zone pore water, groundwater, rock/soil samples) prior to introduction to the MC-ICPMS via a desolvation system. At 7E-11 amps of ²³⁸U ions, a single analysis of a 20ppb U solution uses ~10ng of sample U. For correction of instrumental mass fractionation, we use bracketing analyses of a natural secular equilibrium U standard. This allows us to avoid the use of a double ²³³U-²³⁶Uspike for mass fractionation correction that would compromise our ability to measure ²³⁶U/²³⁸U. We also use the standard analyses for Daly/Faraday gain and for peak-tail correction of the ²³⁶U analyses. Typical precision for 238 U/ 235 U is $\le 0.05\%$ 2s, while for 234 U/ 238 U it is $\le 0.15\%$ 2s. Precision for 236 U/ 238 U is $\le 0.15\%$ 2s down to the 10^{-7} range where precision degrades by a factor of ten. The limit for 236 U/ 238 U measurement is about $2x10^{-8}$, only ~five times higher than accelerator MS. For 1ppb U, this represents $5x10^{7}$ atoms 236 U per liter water.

We will present three ongoing studies at the Hanford site as a demonstration of our techniques: (1) investigation of groundwater and vadose zone contamination in the B-BX-BY WMA (Christensen et al. (2004) Env. Sci. Tech., in press) (2) signatures of vadose zone contamination in waste cribs near U-Plant and (3) investigation of U contamination of the Columbia River.

New approach and technique for tracing uranium in the environment.